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Abstract--The natural convection flow from a heat point source embedded in a non-Darcian porous 
medium is investigated by employing local similarity and modified Keller's Box methods. The non-Darcian 
effects of convective, inertia and thermal dispersion are all considered. The results indicate that the 
non-Darcia:a effects decrease the centerline velocity and temperature and also increase the velocity and 
temperature., boundary layer thicknesses. In addition, solutions using the local similarity method over- 

estimate the centerline velocity and temperature. 

INTRODUCTION 

The steady buoyancy-induced flow arising from ther- 
mal energy source,~ is commonly referred to as a natu- 
ral convection plume. Among such plumes, two gen- 
eral types may be identified--the free plume and the 
wall plume. The free plume is typified by the buoyant 
flow above a heated sphere or a horizontal cylinder. 
A typical wall plume is the flow resulting from a heat 
source along the base of an adiabatic vertical plate. 
The free and wall plumes from a line or a point thermal 
source in a viscous fluid have been studied extensively 
(see, for example, refs. [1-5], and the references cited 
therein). However, the analogous problems of free 
and wall plumes in a saturated porous medium have 
received rather less attention. The applications include 
the natural convection cooling of buried electrical 
cables, the disposal of nuclear wastes, hot-wire 
anemometry, volcanic eruption, etc. 

Wooding [6] developed a boundary-layer theory for 
steady-state natural convection from a line or point 
source in an infinite Darcian saturated porous 
medium. In what follows, Bejan [7] carried out in 
some detail the boundary layer analysis for the plume 
above a point source in a porous medium. Lai [8] re- 
examined the same problem for a point source, using 
a more suitable similarity variable, and he also 
obtained a closed form solution. Bejan [9] used a 
perturbation analysis to study the transient and steady 
natural convection from a point heat source at low 
Rayleigh number in a Darcian porous medium of 
infinite extent. The steady point heat sources at low 
and high Rayleigh numbers in an unbounded Darcian 
porous medium were investigated by Hickox and 
Watts [10] and Hickox [11]. Afzal and Salam [12] 
studied the natural convection arising from a point 
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source in a Darcian porous medium bounded by an 
adiabatic conical surface. Nakayama [13] solved the 
boundary layer equations for free convection from a 
point heat source in a Darcian porous medium satu- 
rated with a non-Newtonian power-law fluid. The 
Darcian mixed convection from a line thermal source 
imbedded at the leading edge of an adiabatic vertical 
surface in a saturated porous medium was numerically 
analyzed by Kumari et al. [14]. 

Coupled heat and mass transfer by natural con- 
vection at low Rayleigh number in an infinite Darcian 
porous medium has been reported by Poulikakos [15] 
for a point source, by Larson and Poulikakos [16] for 
a line source and by Lai and Kulacki [ 17] for a sphere. 
For a large Rayleigh number, Lai [18] obtained the 
similarity solution for a line source, and the closed 
form solutions are presented for the special case of 
Lewis number equal to 1. 

All of the works mentioned above are based on 
the Darcy formulation. However, at a high Rayleigh 
number or in a high porosity medium, there is a depar- 
ture from Darcy's law and the convective, boundary 
friction (no-slip), inertia and thermal dispersion 
effects not included in the Darcy model may become 
significant. Ingham [19] obtained an exact solution 
for the free convection from a line source in an 
unbounded non-Darcian porous medium when only 
the inertia effect is considered, and he shows that 
the non-Darcian flow would produce a much more 
peaked temperature profile than that predicted by the 
Darcian flow. Local non-similarity solutions are 
reported by Lai [20] for natural convection from a line 
source to examine the inertia and thermal dispersion 
effects. It is found that the inertial effect tends to 
reduce the flow and temperature profile while thermal 
dispersion effect enhances this influence further. 
Cheng and Zheng [21] used the local similarity method 
to study the mixed convection plume above a hori- 

1097 



1098 J.-S. LEU and J.-Y. JANG 

NOMENCLATURE 

C inertia coefficient 
Cp specific heat of fluid 
Dax Darcy number, K/x 2 
d mean particle diameter 
f dimensionless stream function 
g gravitational acceleration 
k effective conductivity 
K permeability 
Pr Prandtl number, v/Cto 
Q strength of thermal point source 
Rad Rayleigh number based on the particle 

diameter, gflQd2/2~ko~ov 
Rax local Rayleigh number, gflQx2/2nkcto v 
T temperature 
u, v volume averaged velocity in the x, r 

directions 
x, r axial and radial coordinates. 

ct o stagnant thermal diffusivity 
fl coefficient of thermal expansion 
F dimensionless inertia parameter, 

K2C2 gflQ/27zkctoV 
7 thermal dispersion coefficient 

porosity 
parameter, 1/Da:, Ralx/2 = 
(2~zkct0 vx 2 /gflQ K 2) I/2 

~/ pseudo-similarity variable, 
r(Rax) LIn/x 

0 dimensionless temperature, 
2nkx(T- -  T~)/Q 

y fluid dynamic viscosity 
v fluid kinematic viscosity 
p fluid density 
~k stream function. 

Greek symbols 
ct d thermal diffusivity due to thermal 

dispersion effect 
Subscript 

condition at the free stream. 

zontal line source. The inertia and thermal dispersion 
effects are included. It is noted that the numerical 
methods used in refs. [20, 21], such as the local simi- 
larity method and the local nonsimilarity method, 
have their own drawbacks, as the derivatives of certain 
terms are discarded in order to reduce the partial 
differential equations to ordinary differential equa- 
tions. The rigorous numerical solutions for the natural 
convection flow from the free plume above a heat 
source in a non-Darcian porous medium (combined 
convective, inertia effects and thermal dispersion) 
does not seem to have been investigated. This has 
motivated the present investigation. It is noted that, 
in the absence of a bounding surface, the boundary 
friction effect does not exist in the present problem. 

The object of the present analysis is to study the 
natural convection from the free plume due to a point 
heat source in a non-Darcian porous medium. The 
non-Darcian effects of convective, inertia and thermal 
dispersion are all considered. The governing partial 
differential equations are solved using a suitable vari- 
able transformation and employing an efficient finite- 
difference Keller's Box method [22], incorporated 
with a numerical algorithm developed by Yu et al. 
[23] to deal with the integral boundary condition. The 
non-Darcian effects on the temperature and velocity 
fields will be examined in detail• In addition, the local 
similarity solution is also presented in order to check 
the accuracy of this approximate method for the 
present problem. 

MATHEMATICAL ANALYSIS 

We consider the free convection from a point heat 
source, generating heat at rate Q, which is embedded 

in an unbounded porous medium. The physical model 
and coordinate system are illustrated in Fig. 1. In 
order to study transport through non-Darcian media, 
the original Darcy model is improved by including 
convective, inertia and thermal dispersion effects. In 
addition, if we assume that : (1) the convective fluid 
and porous medium are in local thermal equilibrium, 

x 
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Point heat source Q 

Fig. 1. The physical model and coordinate system. 
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(2) the properties of the fluid except for the density 
term that is associated with the body force are 
constant, and (3) the boundary layer approximations 
are employed, then the governing equations become 

.O(ru) + O(rv) 
8x Or = 0 (1) 

p { 8u 8u~ # 2 
u - -  ) = p~gfl(T-- T ~ ) -  ~:u-pCu (2) k 

[ °'1 ~T 8T 1 O r(~0+ad)~_ r (3) 
U~x +v  Or r Or 

where x and r are the axial and radial coordinates, 
respectively; K is the permeability of the porous me- 
dium; C is the transport property related to the inertia 
effect; e is porosity; s0 is the stagnant thermal diffu- 
sivity and ~d is the molecular diffusivity due to trans- 
verse (radial) thermal dispersion. The other symbols 
are defined in the Nomenclature. Here we adopt the 
following thermal dispersion model proposed by 
Plumb [24], that is 

~d = ~ud (4) 

where 7 is the dispersion coefficient, which has a value 
ranging from 1/7 to 1/3 and d is the mean particle 
diameter. 

The boundary conditions for equations (1)-(3) are 

x = O  r > O  u = O  T= T~ 

~3u ~T 
x > 0  r = : 0  ~ r = 0  v = 0  ~ - r = 0  

r-- ,oo T = T ~ .  (5) 

According to the principle of conservation of 
energy, the conservation of energy requires that, at 
any position x > 0, the convective energy is equal to 
the energy released by the point heat source, Q. Thus 

Q = 2r~p~Cp f ;  u ( T -  Too)rdr. (6) 

We introduce the following transformations • 

1 = -r (Ra~),14 ~(x) 
x Dax Rax i/2 

Ik'(x, r) T(x, r) - T~ 
f (¢ ,  7) - 0(4, t/) - (7) ~oX Q/2nkx 

where Rax = gflQx212nk~o v is the local Rayleigh num- 
ber; Dax = K/x 2 is the local Darcy number and ~O 
is the Stokes stream function, which automatically 
satisfies the continuity equation (1). The parameter 
characterizes the source strength (Q), the distance 
along the plate from the leading edge (x) and the 
permeability (K) of the porous medium. As x 
increases or Q, Kdecreases, the value of ¢(x) increases. 

Substituting equation (7) into equations (1)-(3), we 
obtain 

, F1/2 

, , ,Of+ 
- g2prrl3' I ( f ' - r l f  ) ~  qf '~f~] (8) 

rlO" + O' + (f'O + fO' ) 

/ ,  ao ,af \ 
+?Ra~n(f"O'+f'O ") = Ctf ~ - 0 - ~ )  (9) 

where the primes denote partial differentiation with 
respect to 7, Pr = V/ao is the Prandtl number, 
F=KEC2gflQ/2nkvc~o is a dimensionless inertia 
parameter expressing the relative importance of the 
inertia effect; Rad = gflQdE/2nkeo v is the Rayleigh 
number based on the particle diameter. 

It is noted that Darcy's law corresponds to the case 
of ~ ~ oo (i.e. K--* 0) with F = 0 and 7 = 0, for which 
analytical solutions can be obtained [7]. For  Darcy's 
law, the closed-form solutions in terms of the variables 
(4, q) of the present study are as follows : 

250/ 
f '  - (10) 

256 
0 = / 32'~2" (11) 

3 t q 2 ~ - l + ~ - )  

The transformed boundary conditions for equa- 
tions (8)-(9) are 

f(~,O)=ff(~,O)=O'(~,O)=O 0(~, oo) = 0 (12) 

and the constraint is 

fi °f'O&l = 1. (13) 

In terms of new variables, it can be shown that the 
dimensional velocity components and temperature are 
given by 

= (gfla°~oy/2f'(~, rl) u 

v=~°K-'12~-'12(~ f ' - f  rl~ ~) 
f Qv o 

T -  T~ = \2ngflk ] ~ -. (14) 

NUMERICAL METHOD 

In this study, both the local similarity and Keller's 
Box finite-difference methods were used. For  the 
finite-difference method, equations (8) and (9) associ- 
ated with boundary conditions (12) were solved by an 
efficient and accurate implicit finite-difference method 
similar to that described in Cebeci and Bradshaw [22]. 
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To begin with, the partial differential equations are 
first converted into a system of first-order equations ; 
then these first-order equations are expressed in finite- 
difference forms in terms of center difference. De- 
noting the mesh points in the 4-r/plane by ~i and rb, 
where i = 0, 1 , . . . ,  M and j = 0, 1 . . . .  , N, this results 
in a set of nonlinear difference equations for the 
unknown at (i in terms of their values at ¢i ~. The 
resulting nonlinear finite-difference equations are then 
solved by Newton's iterative method. The boundary 
layer equations are thus solved step by step by taking 
the converged solution at ~ = 4~-~. To initiate the 
process, equations (8) and (9) with 4 = 0 are first 
solved by using a sixth-order variable-step-size 
Runge-Kutta integration scheme. After obtaining a 
converged solution along 4 = 0, this solution is then 
employed in a Keller Box scheme with second-order 
accuracy to march step by step along the boundary 
layer. 

We adopted the numerical algorithm [23] to deal 
with the integral constraint equations (13). We first 
drop the boundary condition 0'(¢,0) = 0, and assume 
another presupposed boundary condition 0(4,0) = s, 
where s is the undetermined nonzero constant. The 
refined value of s can be estimated by the Newton- 
Raphson method, associated with one set of variation 
equations which were derived by taking the derivatives 
of the finite-difference equations of equations (8) and 
(9) and their boundary condition (12) with respect to 
s. These variation equations can also be solved by 
using Keller's scheme (the details can be seen in ref. 
[22]). The dropped boundary condition, together with 
the integral condition, equation (13), are treated as 
constraints. The iterations for adjusting the pre- 
supposed boundary condition are repeated until the 
following criterion, which is the sum of squares of 
the discrepancies for the constrained conditions, is 
satisfied : 

In the calculations, the values oft/~ = 20 was found 
to be sufficiently accurate for 10~1 < 10 -3. Uniform 
step sizes ofArl = 0.05 in the q-direction and A4 = 0.1 
in the ~-direction were used. 

For the local similarity method, this problem con- 
sists of solving only equations (8) and (9) when the 
right-hand sides of these equations are replaced by 
zero. A sixth-order variable-step-size Runge-Kutta 
integration routine in conjunction with the Newton- 
Raphson iterative scheme is used here to solve equa- 
tions (8) and (9). The t/~ decreased gradually with 
increasing ~ and ranged from qoo = 20 for 4 = 0 to 
q~ = 5 f o r ~ =  8. 

RESULTS AND DISCUSSIONS 

Three different solid-fluid combinations shown in 
Table 1 were used in this study. The values of per- 

meability K and inertia coefficient C were calculated 
by employing the Ergun model [25]: K =  
d2e3/[150(1 _e)2], C = 1.75(1-e)/e3d. 

Figures 2 and 3 show the finite-difference solutions 
of the dimensionless tangential velocity 

(gflQ~o~2nkv) ~/2 = 
and temperature 

(T-T~) 
(Qvao/2~tgflKZk)'/2 (= ~) 

profiles across the boundary layer, respectively, at 
different values of 4 with Pr = 5.4, F = 1200 and with 
no thermal dispersion taken into consideration 
(y = 0). The dashed lines denote the analytical solu- 
tions based on the Darcy model (~ = oo, F = 0 and 
7 = 0) [7]. The dimensionless abscissa is set to r/4 °5 
(= r/K~/2). It is seen that the centerline velocity 
and temperature decrease with increasing values of ~ ; 
that is, both the centerline velocity and temperature 
decrease with the increasing downstream distance x 
for given source strength Q and permeability K, or 
decrease with the decreasing Q for fixed x and K. In 
addition, the temperature boundary layer thickness 
increases as 4 increases. It is also observed that 
Darcy's solutions overestimate the centerline velocity 
and temperature. It is also shown that, as may be 
expected, Darcy's law is only valid for large values of 4. 

Figures 4 and 5 show the finite-difference solutions 
of the inertia effect (F = 1200, 4800, 37 120) on the 
dimensionless tangential velocity and temperature 
profiles, respectively, at 4 = 2 with 7 = 0.15 and 
Rad = 300. The dash lines represent the Darcy model 
[7]. It is seen that the inertia effects significantly flatten 
the velocity and temperature profiles and thicken the 
velocity and temperature boundary layer thicknesses. 
This is because the form drag of the porous medium 
is increased, when the inertia effect is included. The 
results also indicate that, as the value of F is increased, 
the centerline velocity is decreased, while the center- 
line temperature is increased. To visualize the inertia 
effect on the temperature fields, the dimensionless iso- 
therms for 0/4 = 0.25 generated for F = 1200, 4800 
and 37 120 with 7 = 0.15 and Rad = 300 are plotted 
in Fig. 6. The dimensionless ordinate and abscissa 
variables are set to 

and 

4(  = (gflK:Q/2rckvc%)l/i) 

The dashed line represents the Darcy model. It is seen 
that the centerline temperature expands farther for a 
Darcy model and makes the isotherm of Darcy model 
more slender. This is due to the fact that the Darcy 
model overestimates the heat transfer rate ; thus heat 
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Table 1. Three different solid-fluid combinations and heat source strength used in this study 
with Pr = 5.4 

d Q K C 
Fluid Solid [mm] ~ [W] [m 2] [m - ~] F 

'Water Glass 3 0.375 200 8 × 10 -9 6913 1200 
'Water Glass 6 0.4 200 4 x 10 -s 2836 4800 
"Water Glass 15 0.453 200 4.6 × 10 -7 686 37 120 
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Fig. 3. The dimensionless temperature profiles across the 
boundary layer at ~ = 1, 2 and 3 with Pr = 5.4, F = 1200 

and 7 = 0. 
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Fig. 5. The dimensionless temperature profiles across the 
boundary layer for F = 1200, 4800 and 37 120 at ¢ = 2 with 

Pr = 5.4, 7 = 0.15 and Rad = 300. 

is more  easily transferred in the downst ream direction. 
Moreover,  as F increases, the temperature boundary  
layer thickness is increased, therefore the isotherms 

become flatter. 
Figures 7 and 8 ,;how the finite-difference solutions 

of  the thermal dispersion effect (? = 0, 0.15, 0.3) on 
the dimensionless tangential velocity and temperature 

profiles, respectively, at ~ = 1 with F = 1200, 
Rad = 300. The dashed lines represent the Darcy 
model[7]. It is seen that,  as the value o f  7 is increased, 
both  the centerline velocity and temperature decrease. 
We also observe that  the velocity and temperature 
boundary  layer thicknesses increase with increasing 
values of  7. This is expected as the transverse (or 
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Fig. 6. The dimensionless isotherms for 0/3 = 0.25 generated 
for F = 1200, 4800 and 37 120 with 7 = 0.15 and Rad = 300. 
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F = 1200 and Rad = 300. 
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Fig. 7. The dimensionless tangential velocity profiles across 
the boundary layer for 7 = 0, 0.15 and 0.3 at ~ = 1 with 

Pr = 5.4, F = 1200 and Rad = 300. 
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Fig. 9. The dimensionless isotherms for 0/4 = 0.25 generated 
for ~ = 0, 0.15 and 0.3 with F = 1200 and Rad = 300. 

radial)  t he rma l  d i spe rs ion  effect increases  the  effective 
t he rma l  conduc t iv i ty  o f  the  packed  bed.  The  d imen-  
sionless i so the rms  for  0/4 = 0.25 gene ra ted  fo r  7 = 0, 
0.15 and  0.3 are  s h o w n  in Fig.  9. The  d a s h e d  line 
deno te s  the  D a r c y  model .  It is seen tha t ,  w h e n  the  
the rma l  d i spe rs ion  effect is inc luded,  the  i so the rms  
b e c o m e  flatter.  This  is due  to  the  fact  tha t  the  value 
o f  effective t he r m a l  conduc t iv i ty  o f  the  packed  bed  is 
increased ,  a n d  thus  hea t  is m o r e  easily t r ans fe r red  in 
the  t r ansverse  di rect ion.  

The  var ia t ions  o f  the  center l ine  t e m p e r a t u r e  a n d  
veloci ty over  a wide  range  o f  ( a re  s h o w n  in Fig.  
10(a) a n d  (b), respect ively,  for  F = 1200, 7 = 0.15 a n d  
Rad = 300. The  local  s imilari ty,  f ini te-difference a n d  
D a r c y  m o d e l  [7] so lu t ions  are  p resen ted .  It is seen tha t  
b o t h  the  local  s imilari ty m e t h o d  a n d  D a r c y  m o d e l  

ove res t ima te  the  center l ine  t e m p e r a t u r e  and  velocity.  
As  expected ,  the  a g r e e m e n t  be t ween  local  s imilar i ty  
a n d  Kel le r ' s  Box  m e t h o d s  o f  so lu t ion  de te r io ra tes  
w h e n  ~ increases.  F o r  example ,  for  the  center l ine  tem-  
pera tu re ,  the  e r ro r  for  the  local  s imilar i ty  m e t h o d  is 
6 %  at ~ = 0.1 a n d  185% at  ~ = 8, a n d  for  the  cen te r -  
line veloci ty  it is 3 .6% at  ~ = 0.1 a n d  110% at ~ = 8. 
F o r  a m a x i m u m  e r ro r  o f  15%, the  value o f  the  
center l ine  t e m p e r a t u r e  is f o u n d  to be sa t i s fac tory  
for  the  ~ ~< 1 value,  while  the  value o f  the  center l ine  
veloci ty  is sa t i s fac tory  for  ~ ~< 3.5. 

C O N C L U S I O N  

The  r igorous  numer ica l  so lu t ions  for  the  na tu ra l  
convec t i on  f low f r o m  a hea t  p o i n t  source  in a n o n -  
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Fig. 10. The variation of dimensionless centerline tem- 
perature and velocity over a wide range of ~ with Pr = 5.4, 

F = 1200 and y = 0.15. 

Darc ian  porous  med ium are performed.  A new par-  
ameter,  

1 (2 k 0vx2yJ21 
(DaxRax '/2) \ K~gflQ ,] ] 

characterizes the source s t rength (Q), the distance 
a long the plate f rom the leading edge (x), the per- 
meabil i ty (K) of  the porous  med ium is introduced,  
and  Darcy ' s  law corresponds  to the case of  ~ --* oe 
with F = 0 and  7 = 0. It  is shown tha t  the Darcy  
model  overest imates b o t h  the centerl ine tempera ture  
and  velocity. As ~he value of  inert ia effect pa ramete r  
F is increased, the centerl ine velocity is decreased and  
the centerl ine tempera ture  is increased, while, as the 
value of  thermal  dispersion coefficient 3' is increased, 
bo th  the centerl ine velocity and  tempera ture  are 
decreased. The  rmmerical  results also indicate tha t  
the local similarity me thod  overpredicts  b o t h  the 
centerl ine tempera ture  and  velocity. W h e n  compared  
with the Keller 's  Box method ,  for a largest er ror  of  
15%, the local similarity me thod  is satisfactory only 
f o r ~ <  1. 
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